Independent component analysis: an introduction.
نویسنده
چکیده
Independent component analysis (ICA) is a method for automatically identifying the underlying factors in a given data set. This rapidly evolving technique is currently finding applications in analysis of biomedical signals (e.g. ERP, EEG, fMRI, optical imaging), and in models of visual receptive fields and separation of speech signals. This article illustrates these applications, and provides an informal introduction to ICA.
منابع مشابه
Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions
Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...
متن کاملAn Introduction to Independent Component Analysis: InfoMax and FastICA algorithms
This paper presents an introduction to independent component analysis (ICA). Unlike principal component analysis, which is based on the assumptions of uncorrelatedness and normality, ICA is rooted in the assumption of statistical independence. Foundations and basic knowledge necessary to understand the technique are provided hereafter. Also included is a short tutorial illustrating the implemen...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملA Tutorial on Independent Component Analysis
Independent component analysis (ICA) has become a standard data analysis technique applied to an array of problems in signal processing and machine learning. This tutorial provides an introduction to ICA based on linear algebra formulating an intuition for ICA from first principles. The goal of this tutorial is to provide a solid foundation on this advanced topic so that one might learn the mot...
متن کاملAn Introduction to Independent Component Analysis and Blind Source Separation
1 ICA 2 1.1 Examples of linear mixtures of independent components . . . . . 2 1.2 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ICA from Maximum Likelihood . . . . . . . . . . . . . . . . . . . 4 1.4 PCA and ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Minimal Mutual Information . . . . . . . . . . . . . . . . . . . . 6 1.6 Maximum Transmitte...
متن کاملAn introduction to Multiway Methods for Multi-Subject fMRI experiment
Model free exploratory methods available for functional MRI analysis of one subject such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are investigated for generalisations when analysing more than one subject. Introducing the subject dimension makes a three-way data: brain, time, subject, and multiway methods are proposed either to optimise the variance (PCA) or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in cognitive sciences
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2002